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ADDENDUM 

Green functions for relativistic particles in non-uniform 
external fields 

V V Dodonov, I A Malkin and V I Man’ko 
P N Lebedev Institute of Physics, Leninsky Prospect 53, Moscow, USSR 

Received 7 October 1975. in final form 16 June 1976 

Abstract. The class of external fields for which the causal Green functions of the Klein- 
Gordon and Dirac equations can be calculated exactly by means of the methods of integrals 
of motion and coherent states is shown. Several important examples are considered. 

In recent papers by Dodonov et a1 (1975a, b, c, to be referred to as I, 11,111) the general 
method of calculating the Green functions of the Schrodinger equation by means of the 
integrals of the motion and coherent states was suggested. This method gives the 
equations for the Green function G(zl; z2;  t )  of any dynamical system with N degrees 
of freedom. (As usual, we mea! by the dynamical system any system described by an 
equation of the type i d$/dt = HI), fi being an arbitrary operator, t being an arbitrary 
parameter.) 

In an arbitrary z-representation these equations are (see equations (1.12)-( 1.13) of 
11, I11 or equations (la)-(lb) of I in the case of the coordinate representation): 

here 6, j = 1, 2, . . . 2N, are 2 N  quite arbitrary independent operators, and 4. are the 
quantum integrals of the motion coinciding with 6 at the initial moment t = 0. The 
symbol f ( k l G ( ~ l ;  z2;  t ) ( k  = 1,2)  means that the operator 1 acts on the function G as the 
function of only the first ( k  = 1) group of arguments (zl) or the second ( k  = 2) one (z2), 
while other variables should be considered as parameters; fT means the transposed 
operator. The equations (1) were used in 1-111 to obtain the explicit expressions for the 
Green functions of the most general non-stationary multi-dimensional non-relativistic 
quadratic system in various representations and for the Green function of the non- 
stationary oscillator with the additional term gx-* (the so called singular oscillator); this 
last problem was also considered using another method by Dodonov et al (1974a, b). 
The equations which are the special case of equatioris (1) were also applied by 
Landovitz (1975) for calculating the Green function (in the coordinate representation) 
of a very special example of general quadratic systems: an oscillator in uniform constant 
magnetic and periodic electric fields. This problem was earlier solved by Malkin and 
Man’ko (1970). In more recent interesting papers by Campbell et al (1976a, b) some 
equations similar to equations (1) were used for solving the eigenvalue problem for 
various operators. However, these authors did not use the most general equations, and 
did not clarify the meaning of the operators entering into equations of the type (1) as the 
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integrals of the motion. Actually the equations by Campbell et al are the consequences 
of equations (l), since ever solution of the Schroainger equation 9 ( z ;  zo; t )  depending 
on N parameters t o  , z o  , . . . zi” can be considered as the Green function in an 
appropriate z,  zo-representation, and vice versa. 

In all the papers mentioned above only non-relativistic problems were considered. 
In the present article we want to apply the method of integrals of the motion to the 
relativistic Klein-Gordon and Dirac equations and to find the Green functions of these 
equations for some new types of external fields. 

We shall consider mainly the Klein-Gordon equation. The specific features of 
Dirac’s equation will be discussed at the end. The Green function of the Klein-Gordon 
equation satisfies the equation 

(1) ( 2 7  

A” is the four-dimensional vector potential of the external field. 

terms of the integral over the proper time: 
As was shown by Fock (1937) and Schwinger (1951), G(q”; 4’) can be expressed in 

€ + + O  (3) 
1 “  

G(q“;q ’ )=z  exp[-~(m*-i€)s]g(q”; q‘; s ) d s  
0 

where the function g(q”;q’ ;s)  is the Green function (the propagator) of the 
Schrodinger equation 

g(q”; q‘; s) = i S(s) S(9”-4’);  

(4) A= -;(E” -eA”)(Eg -eA,).  

Equation (4) can be solved exactly using the method of 1-111 for the two main types 

( a )  In the first case the contravariant components of the vector potential are as 
of potential A”. 

follows: 

This potential describes in the general case a uniform stationary electric field f 
directed parallel to the z axis, a non-uniform non-stationary magnetic field +(o1 + 02) 
directed along the same axis, non-uniform crossed electric and magnetic fields in the 
xy-plane, an arbitrary classical plane wave moving along the z axis, and the quantized 
field of photons with the frequencies flk and two different polarizations moving in the 
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same z direction. The model in which the interaction of a charged particle with the 
quantized radiation field is described by introducing the operator terms (6;' and (6:))+ 
are the annihilation and creation operators) into the vector potential of the external 
field was suggested by Dirac (1946) (see also Sen Gupta 1952). The functions wj, 
j = 1 , 2 , 3 , 4  and Fk, k = 1,2,  may be arbitrary functions of t4. However, the Hamilto- 
nian (4) with the potential ( 5 )  can be considered as a quadratic Hamiltonian. 

Indeed, introducing the new variables 

f74 = $ ( P o  + P 3 )  0 1 5 3 = p  - p 3 ;  f 7 3 =  - 3 ( t + z ) ;  

[ ~ j ,  6 I = iajk ; j , k = 3 , 4  

(these variables were suggested by Dirac 1949) one can rewrite the Hamiltonian of 
equation (4) with the potential ( 5 )  as follows: 

fi=G,+&; 6, = -&64+$f(t44734+44l44); f =  e r  
fiL=$(@'-eA')2+$(@2-eA 2 2  ) . 

Following the general method of I we are to find integrals of the motion of equation 
(4). One can check that the operators 

are integrals of the motion for equation (4). Therefore the function g(s) can be 
represented in the form 

g({qII), 53964; { q 3 ,  13,14; s) 

= e-'"*~(5~-13)~(5~-f-'(1 -e-fS)l3- e -fs 14)g1({qII}; { q 3 ;  s) (6) 

where the symbol {ql) designates the transverse coordinates of the particle x, y and the 
set of quantum numbers describing photons; the function gl(s) is the Green function of 
the two-dimensional Schrodinger equation with the transverse Hapiltonian fil which 
can be obtained from fiL by means of replacing the operator t4 by the c-number 
function x ( s  ; 13, 14) = f - ' (  1 - e-"))13 + e-fs14. Thus the problem is reduced to solving the 
Schrodinger equation with the non-stationary quadratic Hamiltonian. 

The integral (3) in the case under study can be easily calculated due to the S function 
in equation (6). Therefore the Green function of the Klein-Gordon equation in the 
{qL}, t3, t4-representation is 

G({qII), 637 54; {d}, 13914) 
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Iff = 0, then equation (7) becomes: 

The formula (7) was not known up to now, although various special cases of the 
potential ( 5 )  were considered by many authors (for references see e.g. Nickle and Beers 
1972 and Dodonov ef a1 1976). To obtain the explicit form of the function gl(s) one 
should only substitute the concrete values of the parameters determining the quadratic 
Hamiltonian fil into the general formulae for the Green functions of quadratic 
Hamiltonians given in 1-111. (Needless to say exact results can be obtained not only for 
the potential (9, but for all potentials which can be obtained from (5) by means of 
Lorentz or gauge transformations.) 

The function gl(s) in the absence of the quantized field (Ak = 0) was given by 
Dodonov er al(1975d, 1976). Therefore here we consider briefly the case hk # 0. Let 
us suppose for simplicity that f = w 3  = o4 = 0; w1 = w2 = w = constant, and that all 
coupling constants A k  are small. Then one can take into account only linear (with 
respect to A k )  terms (provided w # 13nk, see below). 

In this approximation the Green function is factorized, so that it is sufficient to 
consider only two modes with different polarizations and the same frequency a. To 
eliminate the exponential terms exp( f we make the following canonical transfor- 
mation (Clnew = exp[it4n(S:d1 +S:S2)](Clold. It is very convenient to introduce the 
operator 

io = (2w)-’ / ’ [ ( / jX +&os) + i(/jy -&,$)I. (8) 

The eigenfunctions of this operator are coherent states of a charged particle in a 
uniform magnetic field. The properties of these sates were discussed in detail by Malkin 
and Man’ko (1968). Having made all substitutions and transformations one can obtain 
from equation (2) the following equation (we suppose that A(’) = A‘2’): 

(We have replaced the integral of the motion f 3  by its eigenvalue I, and the operator ij4 
by the operator 8/85.) Using the general formula for quadratic Hamiltonians given in 
the papers by Dodonov er a1 (1975b, c), one can obtain the following expression in the 
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(a1 Wl + ia2 Wz) + iA (pi WT - ip2 G) +iA e-irls 

-ibs 
0 e  

"+h 

Wo(s) = e ' " ' [ F 1 ( ~ ' + 1 ~ ) - i . F 2 ( ~ ' + 1 ~ ) ]  d7; 

Wl(s) = [ ei"'[hF1(5'+17)-ioF2(5'+17)] d7; 

W2(s) = [ e i n ' [ o F 1 ( ~ ' + l ~ ) - i ~ ~ z ( ~ ' + l ~ ) ]  d r ;  

0 3  s = (5 -5')/I; d =  IR; I = p  - p .  

An asterisk indicates complex conjugate. F,(f) ,  j = 1 , 2  are the classical parts of the 
plane wave. a, and p,, n = 0 ,1 ,2  are eigenvalues of the operators 8,. The function 
(10) can be also considered as the transition amplitude from the initial coherent state 
/Bo, pl, p2) into the final state la!, a?, a?). 

Equation (10) is not valid in the resonance case, when o = H R .  This case will be 
considered elsewhere. 

(b) The second case corresponds to external fields which can reduce the Klein- 
Gordon equation to the problem of the singular oscillator. There are several different 
types of potentials of this kind. For example: 

eA'= - y ( $ ~ ( t ) + y p - ~ ) ;  eA = x(&(S)  + yp-'); 
(11a) eAo = eA = $oo( , f )p2 + yop-2;  p 2  = x 2 + y 2 ;  & = t - z  

or 
(1 1b) 

o and W O  may be arbitrary functions of 6; y, yo are constants. One can $asily check that 
the function A' is contained in equation (1) only in the combination IAo(f= 9'-9'), 

A ' = A ~ = O ;  eA = eA = $U ( 5 ) ~ '  + yx-'; 
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the operator 1 being the integral of the motion. We write the explicit expression for the 
Green function in the special case A’ = 0; w = constant (otherwise the formulae are too 
cumbersome). Introducing cylindrical coordinates and using the previous results of 
Dodonov er a1 (1974a) relating to the Schrodinger equation, one obtains: 

G ( p 2 , 4 2 , 1 2 , 5 2 ;  PI,  4i,Ii, 51) 

tan 4 = y / x ;  s = ( 5 2 - 5 1 / 1 2 ) .  (12) 
This function describes the motion of a charged scalar particle in the field which is the 
combination of the uniform magnetic field w and the field of the infinitely long and 
infinitely thin solenoid parallel to the uniform magnetic field. The magnetic flux created 
by the solenoid is equal to 2my. If y’ = y + n, n being an integer, the functions G ( y ’ )  and 
G ( y )  differ only by the phase factor e ~ p [ i n ( + ~ - 4 ~ ) ] .  Exact solutions and Green 
functions can be also obtained for the potentials with the singular terms of the type 
~ ( 4 ) p - ~  (for the Schrodinger equation this was shown by Dodonov et a1 1974b). 

In conclusion we wish to make some remarks concerning Dirac’s equation. It can be 
transformed by means of the well known procedure into the second-order equation 
which is similar to equation (1) with the only difference being that there is the additional 
term -$eFwy(ywyy - yYy”) in the left-hand side (Fwy is the electromagnetic field 
tensor; yw,  p = 0, 1, 2, 3 are Dirac matrices). Therefore the Green function of Dirac’s 
equation can be obtained easily from that of the corresponding Klein-Gordon equa- 
tion, provided Fwy depends only on the proper time. This restriction is very significant: 
in case ( a )  we have to deal only with constant uniform fields (wj =constant), since 
otherwise Fwy would contain terms of the type y aw( t ) /a t .  Case ( b )  must be excluded for 
the same reason. 
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